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Bifurcation picture for gap solitons in nonlinear modulated systems
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We investigate the problem of nonlinear wave propagation in periodic media. Four different classes of
periodic nonlinear media are taken into consideration: a nonlinear diatomic elastic chain, modulated nonlinear
optical media, a diatomic easy-axis ferromagnetic chain, and an easy-plane antiferromagnet in an external
magnetic field. The main result of our work is a qualitative analysis of all kinds of small amplitude soliton
excitations with frequencies lying in the gap and near the gap of the linear wave spectrum. We also study the
evolution of the system phase portrait and the bifurcation picture of the soliton solutions under changes of the
medium parameter$S1063-651X99)06408-9

PACS numbgs): 41.20.Jb, 63.56:%, 66.90:tr, 42.25—p

I. INTRODUCTION II. FORMULATION OF THE PROBLEM AND THE MAIN
DYNAMICAL EQUATIONS

Generally the soliton dynamics of nonlinear systems have (i) Primarily we consider a one-dimensional periodic di-
been investigated essentially in the framework of simpleatomic chain with atoms of masskbkandm (M >m) and an
models of the homogeneous medium. Nowadays a new arignharmonic potential of the nearest-neighbor interaction and
interesting problem is the propagation of a nonlinear wave iPh-site potential. We choose the even interparticle potential
a periodic medium. The periodicity of the structure leads to
the initiation of the gap or gafdstop bandksin the dispersion U(&,)= é§z+ 954 1)
law of linear excitations, and the existence of such a gap o2 4w
affects essentially the structure and properties of solitons
with the parameters lying near the gap. It is well known thatand even on-site potential
the condition of existence of two-parameter solitons for a
fixed sign of the nonlinearity is related to the sign of a linear _% 0 E 4

; : : L V(u,) =z ug+ 7 up, )
wave dispersion. In the case of the existence of a periodical 2 4
nonlinear medium near the gap of the spectrum, there are
two branches of the spectrum with opposite dispersion signgvhereu, is thenth atom displacement,=u,—u,_,, and
The width of a gap with a low-amplitude modulation of the We take the constans anda to be positive.
medium properties is small, and excitations from these two The corresponding equation of motion for thth particle
branches interact strongly between themselves. Thus the afias the form
swer to the question concerning the character of combine
two-component solitons is not evident in this situation. In a M&ﬁLA U _ n
modulated medium some physical parameters vary periodi dt? (2Un=Un+ 1= Un—g )+ ety
cally with the coordinate. The nonlinear optical medium with
the modulation of the refractive index gives us the example d?u, 3
of a modulated systerfil—3]. The one-dimensional unhar- (m_M)F 8(n—2s) ( +{C(Up—Uny1)
monic diatomic chain represents another exanple

One-dimensional unharmonic elastic and magnetically or-  +C(u,—u,_)3+ ﬂuﬁ}zo, 3
dered chains have become a classical object of investigation
of nonlinear and soliton dynamid$,6]. The simplest and where in brackets we have separated the linégr (nodu-
most natural generalization of a homogeneous chain is a dlated (M), and nonlineakN) parts of the equation.
atomic chain with periodically arranged atoms of two differ- (i) For comparison, the corresponding equation for non-
ent types. In a preceding papEzt] we gave the simplest linear electromagnetic waves in periodic mediunﬁ]j}s
example of a nonlinear elastic diatomic chain with two dif-
ferent masses and with nearest-neighbor interaction. Some #E  °E x\ 9%E ) 9°E
properties of the gap soliton in such a chain differ from those | .2~ 2| ocog 7 - VIE| =0.
of the Bragg solitons in modulated optical media due to the
discreteness of the nonlinear chain. In this paper we will
consider diatomic elastic and magnetic chains with morén addition, we consider two simple models of magnetically
general types of modulatigy—9]. ordered modulated chains.

at?

at?
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(iii) The dynamics of the easy-axis ferromagnet with two 52

% aw
magnetic sublattices with different lengths of the spins is M— +(2A+ a)v+2Aa—=0, 9
expressed by the equations ot ax
dMm, - s - s s s s 9w v
dt n nfMh— n n€) =Y, mF+(2A+ OZ)W—ZAC(EZO. (10
n=2s, ) The essential feature of this set of equations is that they
- contain only the first space derivatives. Such a property of
m o o o . : ; o
”+J[m M ]+ (MM, 1]+ B[M.e](m.6)=0 these dynamical equations is specific to the value of the

dt Wave numberko—q-rIZa and the small width of the gap

—w2 wl [A=(2A+a)(M—m)/Mm for the diatomic
n=2s+1, (6)  chainl. This fact gives the possibility of a qualitative analysis
of a dynamical system on the phase plane. Linear waves of
WhereM andmn are the magnetlzatlons of the Sublattlc.bs, the formsv ~ Sln(KX)Sln((y)t) andw~ Cos@x)sn‘](wt) have the
is the exchange integral, artlis an anisotropy constant. For dispersion law
examples of such systems see, e.g., Red].

(iv) The dynamical equations for the biaxial antiferromag- 5 5 42 )
net with a strong easy-plane anisotropy in the presence of an Oy, =wz1* 2ATa)(M—m) (ak) (1)
in-plane magnetic field has the form
42D 3 for upper(u) and lower(l) branches of the spectruriThe
il — Z[sin(®,—®, . 1) +siN(®,— D, )] dropped second space derivatives in E§s.and (10) give
wg dt B rise to the small terms in Eq11) of order (ax)?, which do
not contain the large parameteévi-m) 1.]
. Y _ The approximate solution of Eq4) may be written as
Fhsin(®p) +25sin(Pp)cod ) =0, (D E—y(x,0)sin@2) + w(x,t)cosg2!), and the dispersion law
for 6<1 is
whereg is the constant of strong easy-plane anisotropis
the constant of small in-plane anisotrogys=H/BMg, wq 5 5 2k2
=2uoMoBl/h, M, is the equilibrium magnetization of the O~ @215 (12)

sublattice, angug is the Bohr magneton. The variablds,
denote the angles in an easy plane between the spin directigvrherewz = (1= 6/2)/42 and A= 51412
and the direction of easy axiéThe external field is parallel 2,1 N '

. ) A similar method also gives the dispersion law with the
to this axis)

two zones for the ferromagnetic diatomic chgiys.(5) and
(6)]. The upper branch () corresponds to the rotation of
Ill. DISPERSION LAW OF LINEAR WAVES the “long” spin with lengthM 5, and the lower branch to that

In the above-listed cases the dispersion law of lineaPf the “short” spinm,. We have the dependenag ),
waves (phonons, photons, or magngnkas a gap akg
= /2a, wherek is a wave number and is the lattice spac- 2MomoJ?
. . Oy NHN= =wy, 1= — (Ka) (13)
ing. [In the case of Eq(4) the wave number of the gdpis (2J-B)(Mo—mg)
ko= m/2l.] The most interesting part of the spectrum is in the
vicinity of ko (at k=ko+x, with xa<1), where two With ®;=2IMy+pBmy, w;=2Imy+BM,, and A=w,
branches of the spectrum have the standard form. For ex= @1=(2J—B)(Mo—m).
ample, in the case of an elastic diatomic chain the lower Finally, for a one-dimensional antiferromagnet in a mag-
branch (1) near the gap corresponds to the oscillations ofnetic field [see Eq.(7)] in the collinear phaséwith @,
heavy atoms with near-opposite phases. This branch ends &t7n in ground statg the dispersion law has the form
the pointwi:(2A+ a)/M. The upper boundary of the gap

is at frequencyw3=(2A+ «)/m, and for this branclfu) the w_2 2J LY h+£ 2. (14)
heavy particles essentially do not move, while the light at- g ,3 ,3 B%h («a
oms vibrate with opposite phases. The displacements of the
particles can be presented in the form The dependencied 1)—(14) have the same form
=vp(t)si 7Tn)+ t)cod " 8 (ka)?
Un=Vn(D)sin| —- | +wp(t)cog -, (®) w(u,I)EwZ,l[ 1+c2 } A2, (15)
14

where the functionsv andv slowly depend on the coordi-

nate. In the long-wave approximation we can change thavhere the small parameter gives the amplitude of the
discrete argument by the continuum coordinate/a, and  modulation of periodic mediaM —m,8,My—mg,h~ v?)
reduce Eq(3) to the following system of partial differential and C=const. The dispersio® = #?w/dx? of two branches
equations for the functiona(x,t) andv(x,t): of the spectrum has opposite signs.
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IV. QUALITATIVE ANALYSES OF SOLITONS NEAR W= —fsin(wt), V=gsinot), (20)
THE GAP OF THE SPECTRUM

Let us bring the nonlinearity into consideration. The V€ obtain the system of ordinary differential equations

structures of nonlinear waves and solitons depend essentially _ —Q2)+ (£q2+3f2
on the character of a linear wave dispersion and the type of f=0l(1- 09+ (&g™+319)], 1)
nonlinearity. The simplest situation appears in the case of —g,= f[(1+ v2— 02)+ (£f2+3gD)], 22

cubic unharmonicity in the dynamical equatiotas in all

above-listed modeJswhich corresponds to the natural inter- where we have introduced the normalized frequeiy
actions of elementary excitations of the “density-density” = wlwy, the width of the gaph = »2=(M —m)/m, and the
type. We can introduce a “nonlinear dispersion law” for the | .- al[;)proximatiorh)l: 3 ’

spatially homogeneous nonlinear waues- w(«,u), where For the optical modelii) the corresponding substitution
w, k, andu are the frequency, wave number, and amplitude, , the main approximation has a form

of the nonlinear wave. The sign of the derivati¥@w/Ju?

characterizes the nonlinearity of the system. In the case of 4 X

“hard” (“soft” ) nonlinearity, we have ¢°w/Ju®>0 E=1/5ysinwt) :f(x)sin — +g(x)cos<—)},

(?w/ 9u?<0). In the first exampldi), the nonlinearity is 3 2l 23
“hard,” and in all other[(ii), (i), and(iv)] it is “soft.” But 23
due to the symmetry of the spectrum near the gap, the,q i this case Eq4) is reduced to a system of two equa-
change of the nonlinearity sign does not give new physicalinns for the functions andg:
results. It is well known that the homogeneous nonlinear

2

waves are modulationally unstable under the condition f,=g[(1—- Q2 —(g?+f?)], (24)
(0%wl 9k?) (9?wl Ju?)< 0, and such an instability leads to en-
velope soliton creation. When the sign in the criterion is —g,=f[(1+ 12— Q2)—(f2+g?)], (25)

changed, homogeneous nonlinear waves become stable and
the existence of specific “dark” solitons becomes possiblesyhere) =2l w= w/w,, v?= /2, andz=x/2l.

As the criterion has opposite signs for two branches of the |n the diatomic ferromagnetic chaifiii) for nonlinear
spectrum near the gap, the envelope solitons in this range @hagnons with wave numbers lying near the middle of the
ffegubeﬂcrilffs ”l]_;JSt represent the complex combination of darRrillouin zone, it is reasonable to represent the magnetization
and bright solitons. v -

We consider the nonlinear diatomic elastic chéinat vectorsM, andm, in the forms
first. Let us introduce normalized displacements of the par-
ticles and normalized coordinate: MX+iMY— 2Mo(—1)"

1/2
1+ %] expliwt)g(x),

] EIC] _, el 20
"N azaTay T Naar ey 1 8

M 1/2
e+ imY— \2mo(— 1) 1+ ﬁ] expli wt)f(x).

(2A+a) X 17
z=——.
2A Then Egs(5) and(6) are reduced to the following system

_ . ) ) of equations:
Substitution of relation8) into Eq. (3) gives the set of

equations in the long-wave approximation, f,=0l(1-Q)—(Lg?*+2)], (27)
Vv 4 m mo |
AW,V - (EV3+30VWR) =0, (18) —g,=f| o (1+v—Q)— | | 2+¢?]|, (28
w? 3 Mo Mo
W, 4 where Q=w/w,, z=2x(1+{)/a, {=BMy/2Jm,, and v
— =V, W = (EW3+30WV2) =0, (19 =olo;—1.
w5 3 Finally, in cas€g(iv) of an easy-plane antiferromagnet in a

magnetic field, it is useful to introduce the slowly varying
where ¢=1+p/2C, o=sgn C, Vy=45°V/ot?, and V,  variablesf(x) andg(x):

=dVloz.

Below we consider the stationargperiodical in time Jowg . [mn ™
small-amplitude solutions of Eq$18) and (19) using the G =7mn+2 Ew_sm(wt) gsin —- —f co >
method of asymptotical expansion. For the small parameter ! (29)

of expansion it is convenient to choose the valfe= (w?

— w?)/w?. In the case of a small amplitude of the modulation ~ Then the system of equations has the forms

of the parameters of the medium, the parameteemains

small everywhere inside and near the gap of the linear spec- f,=g[(1- Q%) —(5_g?+3f?)], (30
trum. To the lowest-ordee (resonanckapproximation in

which —0,=f[(1+v*—Q?) — (5, f2+3¢9)], (31
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where Q=w/w,, 7.=1+2y/J+ph/2J, v*=2hB/(2]  solutions. The phase portrait of the system depends on the
+vy—hp), andz=xB(w/wy)?/2J. signs and on the value of the parametersu, p, g, ando,
In all above-listed examplegi)—(iv)] the equations for and the value of the frequenay.
the slowly varying amplitudes of two components of the field
(f andg) have the same form, and are reduced to the fol-

lowing systems of general type: V. GAP SOLITONS IN A DIATOMIC ELASTIC CHAIN
f,=g[\(w;— @)+ (pg2+of?)], (32) At first we paid special attention to the soliton dynamics
of a diatomic elastic chain with a “hard” nonlinearity of the
—g,=f[ u(wr— 0)+(qf2+ogd)], (33  on-site potential, i.e., on Eqg32) and (33) with A=pu

=1, p=q=(1+/2C)/3, andoc=+1 (C>0). In this case

where|a|=1. The sign ofo characterizes the type of inter- the phase portrait of the system on tlgf() plane depends
action between excitations of the different branches of then the relation between the frequenayand the medium
spectrum, and the signs pfand q characterize the interac- parameteip. The dynamical solutions transform essentially,
tion between excitations of the same branch. The excitationand new solutions appear by way of bifurcation on some
are attracted together under conditioyg,c<<0, and are re- linesw;= w;(p) on the plane of parametess p. The general
pelled from one another whilg,q,0>0. Without loss of theory of bifurcations is given, e.g., in the book by Arnold
generality we can assume thaiu>0. Then the changing of [11].
the signs ofp, g, and o leads only to a changing of the It is convenient for us to discuss the bifurcation picture of
direction of the modification of the bifurcation picture with soliton solutions in terms of the dependence of the fixed
the frequency(see below. points on the frequency and parametep.

Equations(32) and (33) represent the Hamiltonian equa-  There are four domains of the values of paramete(@)
tions for the dynamical Hamiltonian system with one degreep>1 (8>4C), (b) 0<p<1l (2C<B<4C), (c) —1<p

of freedom, and with the following Hamiltonian: <0 (—8C<pB<2C), and(d) p<—1 (B<—8C). In the
5 5 4 . o first region(a) for w<w1, the single fixed point in the phase
Ho N (0r— o) L+ u(o _w)f_+ g_ B, 9o plane is the center &=f=0, and the separatricies and sub-
1 2 M2 2 Py g 4 72 sequently soliton solutions are absent. At w, the first

(39 bifurcation occurs: the center is split, and for the frequency
. i range inw;<w<w, the system possesses a saddle point at

The_ vanables_f andg pIay_the roles of the generalized ca- g=f=0 and two centers at poinfs=0,9=*+\(w— wy)/p.
nonically conjugate coordinate and momentum. [In such a frequency gap there are two separatrix loops, which

We made some assumptions and simplifications to obtaifyg e oyt of the saddle, envelop the center, and enter into the
the effective “dynamical” system of equatioi82) and(33)  same saddle. Atr=w, the second bifurcation occurs: the

with one (_jegree of freed(_)m fro.m the initial discrete dy”am"singular pointg=f=0 (saddlé splits into the center at the
cal equationg3)—(7). An investigation of soliton dynamics t (f=0,9=0) and two new saddle poinfg=0 andf

oin
in the framework of this simple system describes the mairﬁ I )
features of the nonlinear dynamic of the initial system, = wy)/p]. Now these two saddles are bound to

'gether by two different separatrix loops, which envelop the

though the initial one is much more complicated. For ex- e — A v
ample, it is well known that the nonlinear dynamics of dis- centerg=1=0 and the centef=0, g=* y(w—w,)/p, and
grrespond to the two different types of soliton solu-

crete systems, even in the case of a small number of degre iSns. Finally, at frequencyw =, = (pWy—wy)/(p—1),

of freedom, can be chaotic. It occurs at so-called bifurcatio t which the last bifurcation occurs. each of the center point
points, i.e., when the system or solution parameters are clo ' er points

to values which correspond to the essential solution transfol-l — 0 9= V(@ —w1)/p] splits into the saddle points
mation. But numerical calculations show that the dynamicd =0:9=*V(@—w;)/p and new centers in the point
of the system become regular out of the vicinity of these== V(w—w,)/(p+1),0o== \/f§+(w2—wl)/(p—1). The
points. Subsequently solitonlike localized excitations arediscussed bifurcation picture for the dependencies of the sin-
stable in these regionsee, for example, Refl12]). So we gular pointsg andf on the frequency is shown schematically
hope that solutions for gap and near-gap solitons, which wé Fig. 1(a). (The solid lines correspond to the centers and
shall obtain using the effective equatiof®2) and(33), will the dashed lines correspond to the sadilles.
be stable in domains of parameters far from the bifurcation The phase portraits for different frequencies are shown in
points. About the stability of gap solitons, see R&B]. The  Fig. 2 (see domair), where the horizontal axis in all phase
chaotic dynamics of gap solitons and their stability are thepictures correspond to tHdield, and the vertical axis to the
guestions of special interest which we shall not discuss in thg field. The profiles of the andf fields in all solitons can be
paper. easily obtained from the phase portaits. It is clear from Egs.
The existence of the integral of motidth allows one to  (32) and(33) that in the linear limit the lower boundary of
integrate the system of equatiof8) and(33) exactly. The the gap (w=w;) corresponds to the excitations wigh# 0
solutions for solitons of different kinds can be easily ex-andf=0, i.e., theg field describes the excitations from the
pressed in terms of the hyperbolic functiop, but it is  lower branch of the spectrum. In contrast, the upper branch
useful to use methods of qualitative analysis of dynamicatorresponds to the excitations of thield, and on the upper
systems and consider possible solutions of the system dfoundary of the gapd= w,) we haveg=0 andf #0. In the
equations(32) and (33) in the phase planeg(f). Attention  case of the diatomic elastic chain, thefield describes the
should be paid to separatricies, which correspond to solitoopposite-phase vibrations of heavy atoms with mésd et
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FIG. 1. (a) Bifurcation picture for the diatomic elastic chain in the casp®fl. The solid lines correspond to the centers, and the dashed
lines to the saddlegb) Bifurcation picture for the diatomic elastic chain in the case aff3<1. The solid lines correspond to the centers,
and the dashed lines to the saddlesBifurcation picture for the diatomic elastic chain in the case-df<p<0. The solid lines correspond
to the centers, and the dashed lines to the sad@eBifurcation picture for the diatomic elastic chain in the cas@af— 1. The solid lines
correspond to the centers, and the dashed lines to the sa@llB#urcation picture for the modulated nonlinear optical media. The solid
lines correspond to the centers, and the dashed lines to the safid&furcation picture for the modulated ferromagnetic. The solid lines
correspond to the centers, and the dashed lines to the saddles.

us note that in the soliton fan; <w<w, only the curve for <, , solitons of two types$ andC) exist. TheS soliton is
the fieldg(x) has the standard soliton form. The opposite-sjmilar to theS soliton in the gap, but is accompanied by
phase vibrations of the light particléthe f field) are essen- vibrations of light atoms f( field) with a finite amplitude at
tially smaller. The soliton can be considered as bound vibrainfinity (x— *+). It is important that solitons uniform in
tions of the lower branch, which are accompanied byspace for thef field are stable whilew> w,, because the
localized light-atom vibrations, i.e., the soliton of the lower dispersions?w/dk? for the upper branch is positive. That is
branch localized phonons of the upper branch. We will callwhy we can study the solitons of thidield with nonvanish-
this type of soliton anS soliton. In the regionw,<w ing asymptotes in this region @f. The C-type soliton has a
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FIG. 2. The general evolution of phase portraits of the system of equaB@hand(33) with A\=u, p=q, ando=1.

different form. The amplitude of thé field is essentially cies lying in the gap of the spectrum and near the gap
larger than that for the field and, in this sense, this is the have the same form as fgr>1. But the third bifurcation
s_oliton of the upper branch: The e.nvelope fo_r light atoMat =1, =(w,—pw,)/(1—p) differs significantly from
vibrations has the form of a kink in this case. This resultis iny . pic ccation ato=w, for p>1. Now at w=w, the

complete agreement with the analysis of the dynamics of a e o 7 enlit i
dark soliton in a monoatomic unharmonic chain. Finally, atSaddle pointg =0 andf = y(w— w,)/p split into a center

frequencyw=>w, in addition to solitons ofC and S type, &t POINtG=0, f==(w—w,)/p and two saddle pointgo

there exists a new typ) of soliton in which the localized = * V(w—,)/(1+p) and fo=* \/93+(3)2— w1)/(1-p)
excitation of thef field exists against the background of a [Fig. 1(b)]. An analysis shows that fab> w, four different

the dark soliton on the pedestal of tgd'?‘ld’ 1.8, the exci- ¢ e casaw<w, and the separatricé&sandC correspond
tations of thef f!elq are Iocahz.ed in the “hole™ in conden- to new solitons. The main feature of the latter appears to be
sate of the_ excitations of thgfield. . .. the fact that now none of the field vanishes at infinity, and
In the limit M=m we have a monoatomic chain with the main field difference betwe&andC solitons disappears
w1=w,=w, for k=m/2a and without a gap. The phase __ o\ differ only qualitatively by the amplitude of the field
portrait differs essentially from t_hat given above in this Casey the soliton center. Thus, a symmetry betwgemdf fields
[see Fig. 8a)]. There are no solitons now, but only specific . . ~ . .
kinks of two types. In such a “phase kink” thgfield tends ~ ar1ses INS(C) and S(C) solitons. In the special case pf
to zero at one infinity X— ), and thef field tends to zero at =1 the third bifurcation point goes to infinity«, —), and
another infinity — —). The fieldsf andg are identical to We have a simple bifurcation picture similar to those for a
one another as in the limkl =m, and describe the opposite- Nonlinear modulated optical medium investigated in Refs.
phase vibrations of the odd and even particles; the “phaskl.3] [in the case of hard nonlinearity with<<O in Eg. (4)].
kink” is the localized phase shift in a nonlinear homoge- In the limit of a monoatomic elastic chain withl =m,
neous standing wave. The value of this shift is equal to theolitons ofC, S, C, andS type transform into “phase kinks”
lattice spacinga. In the diatomic chain, & soliton repre- as in the above casg>1, but now the structure of these
sents the bound state of two different “phase kinks” with kinks is somewhat different from that of the above kinks.
opposite signs. Now the phase kink describes the phase shift by the inter-
Let us study the bifurcation picture in the secondatomic spacing in a standing nonlinear wave of finite am-
region (b) of parameterp (0<p<1 or 2C<b<4C). In plitude, and separates two domains with the following struc-
this case, like the above npicture, three bifurcations inture of the atomic oscillations: (. ;' ;'t...). [In the
the phase plane take place when the frequeacgrows. above cas@>1, the structure of the atomic oscillations has
The bifurcations atw=w, and w=w, have the same char- the form (.. .T010T010T ...), where indexes (0) denote
acter as in the above occasion, and solitons with frequemonmoving particleg.The bifurcation picture and phase por-
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—1<p<0. In this limit the gap is absentu;=w,=w,)
but nonlinear kinklike solutions lie on each side of the fre-
quency wi=+(2A+a)/m. These phase-shift kinks are

analogous to phase kinks of the c&ae(p>1) in the region
w<w-, and they are similar to the phase kinks of cédndor
0<p<1 in the regionw> w4. But now there exists only one
type of such solitons for all the frequencies<w; and w

¢ >w,. The phase portraits for different values of the fre-

guency are presented in Figs(se domairC), and 3b).
Finally in region(d) with p<—1 (8<—8C), the bifur-

cation picture is analogous to that in cgse 1 (a), but the

roles of the fieldd andg are interchanged and the sequence

of bifurcation frequencies changésompare Figs. () and
1(d)]. Now the nonlinearity of the on-site potential is very
soft, and this fact is more important than the hard nonlinear-
ity of interpretable interaction. The phase portraits for the
(a) casep<—1 (in Fig. 2, domainD) are similar to those for
casep>1 (Fig. 2, regionA), and in limitM =m we have the

g same phase-shift kink, but in the area w;.

We supposed in our investigation that the paramexers
andu in Egs.(32) and(33) are equal. This is correct in the
main approximation foM —m<M. In the next approxima-
tion [for A/ u=1+ (M —m)/2m] the boundary between do-
mains(a) and(b) splits into the narrow region with the width
Ap~(M—m)/m [9], but we do not discuss this effect now.

\ .

/ VI. GAP SOLITONS IN MODULATED NONLINEAR
K/ OPTICAL MEDIA
For the nonlinear optical model, the functiohsand g
obey EQgs.(32) and (33) with A=u=1, o=—1, andp=q
=—1. The bifurcation picture for the dependencies of the
singular pointg andf on the frequency in this case is shown
schematically in Fig. (). It is the same as in Sec. V in the

(b) limit p=1, but now the bifurcation picture is turned over as
the nonlinearity is soft and the valugsandf switch roles.
FIG. 3. (a) Phase portrait of the system of equatid88) and  The only fixed point forw> w, is the center agj=f=0, and
(33) in the limit of M=m, with A\=u, p=g>1, o=1, andw; the soliton solutions are absent. At= w, the first bifurca-
<w. (b) Phase portrait of the system of equati¢88) and(33) in  tion occurs: the center is split, and for the frequency range in
the limit of M=m, with A\=px, p=q, —1<p<0, o=1, ande  w,;<w<w, the system possesses a saddle poing=aff

an
N

<wi. =0 and two centers at poing=0 andf=* Jw,—w. In
traits for case(b) are presented in Figs(H) and 2(domain this frequency gap there exist the two separatrix loops, which
B). correspond to the usual gap solitdig. At w=w; the sec-

The most difficult thing for investigation is regioft), ond blfurcatpn occurs: the saddie= f =0 splits into a cen-
where the nonlinearity of the on-site potential changes sig€ at the point {=0,g=0) and two new saddle points (
and is in competition with the nonlinearity of the interpar- = 0,9=* w1~ w), which are bound together by two differ-
ticle interaction. The bifurcation picture for this case is €Nt Seéparatrix loops, corresponding to the two different types
shown in Fig. 1c). (As usual, the solid curves correspond to Of soliton solutiong2,3]. In nonlinear modulated optical me-
the centers and the dashed lines to the saddiéwre are dia the gap solitons have the form fand C solitons in a

. . . ~ diatomic elastic chain, where the valugandf switch roles.
three beLII’EatIOI’] points, but now the frequency lies in t.he But in the optical model the third bifurcation artype
gap (@<, <w,). The corresponding phase portraits for gjitons are absent. Therefore, in the homogeneous limit
different frequencies are sketched in Fig(s2e domairC). phase kinks are also absent.

(At a certain frequencw, the changeover from one system
of levels to the other takes plageéolitons ofC and S type
are similar to the solitons of these types in cdag after
changing the values dfandg. Two new types of solitons, of
P andR type, are analogous to the solitons®andC type In a diatomic easy-axis ferromagnetic chain with differ-
in region (b), but amplitudes of thé field in the centers of ent length of sublattice spins, E¢&7) and(28) are reduced
these solitons are smaller than its assimtotes in the infinity. Ito the system of equatior(82) and (33), with o= —1, p=

is of interest to consider the limit of a monoatomic chain for—¢, q=—2(mg/Mg)?, A=1, and u=mg/M,, where {

VIl. GAP SOLITONS IN A MODULATED
FERROMAGNETIC CHAIN



2316 A. S. KOVALEYV, O. V. USATENKO, AND A. V. GORBATCH PRE 60

=BMy2Amy<1. In this example not only are the coeffi- consider thap=q=— 3. This is the same situation as for the

cients in linear terms of Eq$32) and (33) for the valuesy  nonlinear diatomic chain without on-site potential but with a
andf different because of the modulation of media, but thesoft nonlinearity. The bifurcation picture has qualitatively
coefficients in nonlinear terms are different fdiy# mgy too.  the form represented in Fig(fl. But now the third bifurca-

But as we used the resonance approximation for t_he smaion frequency isw, =(3w;— w,)/2, and the coordinates of
value (w—w;)/w;, we must putMe=m,. The bifur-  the fixed points on the phase portrait are the following: the
cation picture in this case is shown in Fidf)L For o= w it center ag=f=0 for w> w,; the saddle ag=f=0 and the

is the same as in Sec. VI for optical media, but now thergenters ag=0 andf=+ \3(w,— ) for w;<w<w,; the
are three bifurcation points. For the frequency rang@in  centers atg=f=0 andg=0; f==+ m and the
<w<w, the system possesses a saddle poing=af=0, _ _ ' ~ ' )

: saddles af=0 andg=* 3(w;— w) for w, <w<w,; the
and two centers at pointg=0 and f==\(w,~w)/{. oo ag—f-0 %:0 fij *3()0) _w)* =0 ;ndg
Here we have the usual gap solitons. At w, the saddle ' ' - 2 \/~7
g=f=0 splits into a centerf(=0,g=0) and two new saddle == V3(®1—); and zthe saddles dt=* V3(w, —w)/4,9
points[f=0,g= = J(w,— @)/Z]. But now the third bifurca- = = V3(@2— w)/2+ 2.
tion take place ab=w, = w;— (wy— w1) {/(1— ) <w;. At
w=w, the saddle point§=0 andg=*+ \(w;— w)/{ split IX. CONCLUSION
intoa center at pointsf=0_and g==(w;~w)/{ The main result of this paper is a qualitative analysis of

and two saddle pointfo=*V(w,—w)/(1+{) and go  all kinds of small-amplitude excitations with frequencies ly-
=+ fg+(w—wy)/(1-¢) [Fig. Af)]. This picture is ing in the gap and near the gap of the spectrum of linear
slightly like Fig. 1(b), but the fieldsy andf switch roles and  waves for modulated media. Starting with four different non-
the succession of the bifurcations changes direction. Thénear modulated systems for the small value of the modula-
phase portrait and the distribution of the fielgdsandf are  tion in a long-wave resonant approximation, we obtain a
now topologically as in Fig. 2, domaiB. Analysis shows simple system of cubic ordinary nonlinear differential equa-
that for w<w, four different types of separatric& C, S,  tions of first order for the effective dynamical system with
andC coexist, none of the field vanishes at infinity, and the®"€ degree of freedom. The nonlinear part of these differen-
principal field difference betwee®andC solitons disappear. tial equations includes two independent parameterss and can
In the limit of monoatomic ferromagnetic witkl ;= m; soli- be presented in the following form@f*+sfg” and pg

~ ~ . W o +sgf. A full qualitative analysis of the system with differ-
tons on S S andC_type t.ransform inta “phase kinks® as ent relations between parametprands was carried out, and
in the diatomic elastic chain.

a general classification of all types of gap and near-gap soli-
tons of this system is given in the paper. We investigate

VIIl. GAP SOLITONS IN AN EASY-PLANE transformations of the system phase portrait and the bifurca-
ANTIFERROMAGNET INF?SLEXTERNAL MAGNETIC tion picture of soliton solutions with the frequency of the gap

soliton and under changes of the system parameters. The
In the case of an easy-plane antiferromagnet in the pred@sults are illustrated by the examples of diatomic elastic

ence of a magnetic field in the easy plane, the dynamica#'ystals, the two-sublattice ferromagnet, and the easy-plane

equations(30) and (31) are reduced to Eq€32) and (33)  antiferromagnet.

with A\=u=1, o=-1, p=—(1+2y/J—Bh/2])/3, andq

=—(1+2y/J+ Bh/23)/3. The frequencies of boundaries of

the gap (,;=1+2v/J*+ Bh/2]) depend on the magnetic

field like parameterg| andp, but the dependencegh) and This work was supported in part by a Ukraine-Israel re-

p(h) are unessential. So in the basic approximation one casearch grant.
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