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Bifurcation picture for gap solitons in nonlinear modulated systems

A. S. Kovalev,1 O. V. Usatenko,2 and A. V. Gorbatch2
1Institute for Low Temperature Physics and Engineering, 47 Lenin Avenue, Kharkov, 310164,Ukraine

2Kharkov State University, Svoboda Square 4, Kharkov 310077, Ukraine
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We investigate the problem of nonlinear wave propagation in periodic media. Four different classes of
periodic nonlinear media are taken into consideration: a nonlinear diatomic elastic chain, modulated nonlinear
optical media, a diatomic easy-axis ferromagnetic chain, and an easy-plane antiferromagnet in an external
magnetic field. The main result of our work is a qualitative analysis of all kinds of small amplitude soliton
excitations with frequencies lying in the gap and near the gap of the linear wave spectrum. We also study the
evolution of the system phase portrait and the bifurcation picture of the soliton solutions under changes of the
medium parameters.@S1063-651X~99!06408-9#

PACS number~s!: 41.20.Jb, 63.50.1x, 66.90.1r, 42.25.2p
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I. INTRODUCTION

Generally the soliton dynamics of nonlinear systems h
been investigated essentially in the framework of sim
models of the homogeneous medium. Nowadays a new
interesting problem is the propagation of a nonlinear wave
a periodic medium. The periodicity of the structure leads
the initiation of the gap or gaps~stop bands! in the dispersion
law of linear excitations, and the existence of such a g
affects essentially the structure and properties of solit
with the parameters lying near the gap. It is well known th
the condition of existence of two-parameter solitons fo
fixed sign of the nonlinearity is related to the sign of a line
wave dispersion. In the case of the existence of a period
nonlinear medium near the gap of the spectrum, there
two branches of the spectrum with opposite dispersion sig
The width of a gap with a low-amplitude modulation of th
medium properties is small, and excitations from these
branches interact strongly between themselves. Thus the
swer to the question concerning the character of combi
two-component solitons is not evident in this situation. In
modulated medium some physical parameters vary peri
cally with the coordinate. The nonlinear optical medium w
the modulation of the refractive index gives us the exam
of a modulated system@1–3#. The one-dimensional unhar
monic diatomic chain represents another example@4#.

One-dimensional unharmonic elastic and magnetically
dered chains have become a classical object of investiga
of nonlinear and soliton dynamics@5,6#. The simplest and
most natural generalization of a homogeneous chain is a
atomic chain with periodically arranged atoms of two diffe
ent types. In a preceding paper@4# we gave the simples
example of a nonlinear elastic diatomic chain with two d
ferent masses and with nearest-neighbor interaction. S
properties of the gap soliton in such a chain differ from tho
of the Bragg solitons in modulated optical media due to
discreteness of the nonlinear chain. In this paper we
consider diatomic elastic and magnetic chains with m
general types of modulation@7–9#.
PRE 601063-651X/99/60~2!/2309~8!/$15.00
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II. FORMULATION OF THE PROBLEM AND THE MAIN
DYNAMICAL EQUATIONS

~i! Primarily we consider a one-dimensional periodic d
atomic chain with atoms of massesM andm (M.m) and an
unharmonic potential of the nearest-neighbor interaction
on-site potential. We choose the even interparticle poten

U~jn!5
A

2
jn

21
C

4
jn

4 , ~1!

and even on-site potential

V~un!5
a

2
un

21
b

4
un

4 , ~2!

whereun is the nth atom displacement,jn5un2un21, and
we take the constantsA anda to be positive.

The corresponding equation of motion for thenth particle
has the form

H M
d2un

dt2
1A~2un2un112un21 !1aunJ

1H ~m2M !
d2un

dt2
d~n22s!J 1$C~un2un11!3

1C~un2un21!31bun
3%50, ~3!

where in brackets we have separated the linear (L), modu-
lated (M ), and nonlinear~N! parts of the equation.

~ii ! For comparison, the corresponding equation for no
linear electromagnetic waves in periodic medium is@1#

H ]2E

]x2
2

]2E

]t2 J 2H d cosS x

l D ]2E

]t2 J 2H guEu2
]2E

]t2 J 50.

~4!

In addition, we consider two simple models of magnetica
ordered modulated chains.
2309 © 1999 The American Physical Society
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~iii ! The dynamics of the easy-axis ferromagnet with t
magnetic sublattices with different lengths of the spins
expressed by the equations

dMW n

dt
1J@MW nmW n#1J@MW nmW n21#1b@MW neW #~MW neW !50,

n52s, ~5!

dmW n

dt
1J@mW nMW n#1J@mW nMW n11#1b@mW neW #~mW neW !50,

n52s11, ~6!

whereMW n andmW n are the magnetizations of the sublatticesJ
is the exchange integral, andb is an anisotropy constant. Fo
examples of such systems see, e.g., Ref.@10#.

~iv! The dynamical equations for the biaxial antiferroma
net with a strong easy-plane anisotropy in the presence o
in-plane magnetic field has the form

S 1

v0
2D d2Fn

dt2
2

J

b
@sin~Fn2Fn11!1sin~Fn2Fn21!#

1h sin~Fn!1
g

b
sin~Fn!cos~Fn!50, ~7!

whereb is the constant of strong easy-plane anisotropy,g is
the constant of small in-plane anisotropy,h5H/bM0 , v0
52m0M0b/h, M0 is the equilibrium magnetization of th
sublattice, andm0 is the Bohr magneton. The variablesFn
denote the angles in an easy plane between the spin dire
and the direction of easy axis.~The external field is paralle
to this axis.!

III. DISPERSION LAW OF LINEAR WAVES

In the above-listed cases the dispersion law of lin
waves ~phonons, photons, or magnons! has a gap atk0
5p/2a, wherek is a wave number anda is the lattice spac-
ing. @In the case of Eq.~4! the wave number of the gapk is
k05p/2l .# The most interesting part of the spectrum is in t
vicinity of k0 ~at k5k01k, with ka!1), where two
branches of the spectrum have the standard form. For
ample, in the case of an elastic diatomic chain the low
branch ~I! near the gap corresponds to the oscillations
heavy atoms with near-opposite phases. This branch en
the pointv1

25(2A1a)/M . The upper boundary of the ga
is at frequencyv2

25(2A1a)/m, and for this branch~u! the
heavy particles essentially do not move, while the light
oms vibrate with opposite phases. The displacements of
particles can be presented in the form

un5vn~ t !sinS pn

2 D1wn~ t !cosS pn

2 D , ~8!

where the functionsw and v slowly depend on the coordi
nate. In the long-wave approximation we can change
discrete argumentn by the continuum coordinatex/a, and
reduce Eq.~3! to the following system of partial differentia
equations for the functionsw(x,t) andv(x,t):
s

-
an

ion

r

x-
r
f
at

-
he

e

M
]2v

]t2
1~2A1a!v12Aa

]w

]x
50, ~9!

m
]2w

]t2
1~2A1a!w22Aa

]v
]x

50. ~10!

The essential feature of this set of equations is that t
contain only the first space derivatives. Such a property
these dynamical equations is specific to the value of
wave numberk05p/2a and the small width of the gapD
5v2

22v1
2 @D5(2A1a)(M2m)/Mm for the diatomic

chain#. This fact gives the possibility of a qualitative analys
of a dynamical system on the phase plane. Linear wave
the formsv;sin(kx)sin(vt) andw;cos(kx)sin(vt) have the
dispersion law

v (u,l )
2 5v2,1

2 6
4A2

~2A1a!~M2m!
~ak!2 ~11!

for upper ~u! and lower~l! branches of the spectrum.@The
dropped second space derivatives in Eqs.~9! and ~10! give
rise to the small terms in Eq.~11! of order (ak)2, which do
not contain the large parameter (M2m)21.]

The approximate solution of Eq.~4! may be written as
E5v(x,t)sin(x/2l )1w(x,t)cos(x/2l ), and the dispersion law
for d!1 is

v (u,l )
2 5v2,1

2 6
2k2

d
, ~12!

wherev2,1
2 5(16d/2)/4l 2 andD5d/4l 2.

A similar method also gives the dispersion law with t
two zones for the ferromagnetic diatomic chain@Eqs.~5! and
~6!#. The upper branchv (u)(k) corresponds to the rotation o
the ‘‘long’’ spin with lengthM0, and the lower branch to tha
of the ‘‘short’’ spin m0. We have the dependencev(k),

v (u,l )>v2,16
2M0m0J2

~2J2b!~M02m0!
~ka!2, ~13!

with v252JM01bm0 , v152Jm01bM0, and D5v2
2v15(2J2b)(M02m0).

Finally, for a one-dimensional antiferromagnet in a ma
netic field @see Eq.~7!# in the collinear phase~with Fn
5pn in ground state!, the dispersion law has the form

S v2

v0
D5

2J

b
1

g

b
6h6

2J

b2h
~ka!2. ~14!

The dependencies~11!–~14! have the same form

v (u,l )>v2,1H 16C
~ka!2

n2 J , D;n2, ~15!

where the small parametern gives the amplitude of the
modulation of periodic media (M2m,d,M02m0 ,h;n2)
andC5const. The dispersionD5]2v/]x2 of two branches
of the spectrum has opposite signs.
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IV. QUALITATIVE ANALYSES OF SOLITONS NEAR
THE GAP OF THE SPECTRUM

Let us bring the nonlinearity into consideration. Th
structures of nonlinear waves and solitons depend essen
on the character of a linear wave dispersion and the typ
nonlinearity. The simplest situation appears in the case
cubic unharmonicity in the dynamical equations~as in all
above-listed models!, which corresponds to the natural inte
actions of elementary excitations of the ‘‘density-densit
type. We can introduce a ‘‘nonlinear dispersion law’’ for th
spatially homogeneous nonlinear wavesv5v(k,u), where
v, k, andu are the frequency, wave number, and amplitu
of the nonlinear wave. The sign of the derivative]2v/]u2

characterizes the nonlinearity of the system. In the cas
‘‘hard’’ ~‘‘soft’’ ! nonlinearity, we have ]2v/]u2.0
(]2v/]u2,0). In the first example~i!, the nonlinearity is
‘‘hard,’’ and in all other@~ii !, ~iii !, and~iv!# it is ‘‘soft.’’ But
due to the symmetry of the spectrum near the gap,
change of the nonlinearity sign does not give new phys
results. It is well known that the homogeneous nonlin
waves are modulationally unstable under the condit
(]2v/]k2)(]2v/]u2),0, and such an instability leads to e
velope soliton creation. When the sign in the criterion
changed, homogeneous nonlinear waves become stable
the existence of specific ‘‘dark’’ solitons becomes possib
As the criterion has opposite signs for two branches of
spectrum near the gap, the envelope solitons in this rang
frequencies must represent the complex combination of d
and bright solitons.

We consider the nonlinear diatomic elastic chain~i! at
first. Let us introduce normalized displacements of the p
ticles and normalized coordinate:

Wn5wnA 6uCu
4~2A1a!

, Vn5vnA 6uCu
4~2A1a!

, ~16!

z5
~2A1a!

2A

x

a
. ~17!

Substitution of relation~8! into Eq. ~3! gives the set of
equations in the long-wave approximation,

Vtt

v1
2

1Wz1V1
4

3
~jV313sVW2!50, ~18!

Wtt

v2
2

2Vz1W1
4

3
~jW313sWV2!50, ~19!

where j511b/2C, s5sgn C, Vtt5]2V/]t2, and Vz
5]V/]z.

Below we consider the stationary~periodical in time!
small-amplitude solutions of Eqs.~18! and ~19! using the
method of asymptotical expansion. For the small param
of expansion it is convenient to choose the valuee25(v2

2v1
2)/v1

2. In the case of a small amplitude of the modulati
of the parameters of the medium, the parametere remains
small everywhere inside and near the gap of the linear s
trum. To the lowest-ordere ~resonance! approximation in
which
lly
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W>2 f sin~vt !, V>g sin~vt !, ~20!

we obtain the system of ordinary differential equations

f z5g@~12V2!1~jg213 f 2!#, ~21!

2gz5 f @~11n22V2!1~j f 213g2!#, ~22!

where we have introduced the normalized frequencyV
5v/v1, the width of the gapD5n25(M2m)/m, and the
main approximationv15v2.

For the optical model~ii ! the corresponding substitutio
in the main approximation has a form

E>A4

3
g sin~vt ! H f ~x!sinS x

2l D1g~x!cosS x

2l D J ,

~23!

and in this case Eq.~4! is reduced to a system of two equ
tions for the functionsf andg:

f z5g@~12V2!2~g21 f 2!#, ~24!

2gz5 f @~11n22V2!2~ f 21g2!#, ~25!

whereV52lv5v/v1 , n25d/2, andz5x/2l .
In the diatomic ferromagnetic chain~iii ! for nonlinear

magnons with wave numbers lying near the middle of
Brillouin zone, it is reasonable to represent the magnetiza
vectorsMW n andmW n in the forms

Mn
x1 iM n

y
˜A2M0~21!nH 11

bM0

2Jm0
J 1/2

exp~ ivt !g~x!,

~26!

mn
x1 imn

y
˜A2m0~21!nH 11

bM0

2Jm0
J 1/2

exp~ ivt ! f ~x!.

Then Eqs.~5! and~6! are reduced to the following system
of equations:

f z5g@~12V!2~zg21 f 2!#, ~27!

2gz5 f F m0

M0
~11n2V!2XzS m0

M0
D 2

f 21g2CG , ~28!

where V5v/v1 , z52x(11z)/a, z5bM0/2Jm0, and n
5v/v121.

Finally, in case~iv! of an easy-plane antiferromagnet in
magnetic field, it is useful to introduce the slowly varyin
variablesf (x) andg(x):

Fn5pn12AJ

b

v0

v1
sin~vt ! H g sinS pn

2 D2 f cosS pn

2 D J .

~29!

Then the system of equations has the forms

f z5g@~12V2!2~h2g213 f 2!#, ~30!

2gz5 f @~11n22V2!2~h1 f 213g2!#, ~31!
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where V5v/v1 , h65112g/J6bh/2J, n252hb/(2J
1g2hb), andz5xb(v1 /v0)2/2J.

In all above-listed examples@~i!–~iv!# the equations for
the slowly varying amplitudes of two components of the fie
( f and g) have the same form, and are reduced to the
lowing systems of general type:

f z5g@l~v12v!1~pg21s f 2!#, ~32!

2gz5 f @m~v22v!1~q f21sg2!#, ~33!

whereusu51. The sign ofs characterizes the type of inte
action between excitations of the different branches of
spectrum, and the signs ofp andq characterize the interac
tion between excitations of the same branch. The excitat
are attracted together under conditionp,q,s,0, and are re-
pelled from one another whilep,q,s.0. Without loss of
generality we can assume thatl,m.0. Then the changing o
the signs ofp, q, and s leads only to a changing of th
direction of the modification of the bifurcation picture wit
the frequency~see below!.

Equations~32! and ~33! represent the Hamiltonian equa
tions for the dynamical Hamiltonian system with one deg
of freedom, and with the following Hamiltonian:

H5l~v12v!
g2

2
1m~v22v!

f 2

2
1p

g4

4
1q

f 4

4
1s

g2f 2

2
.

~34!

The variablesf and g play the roles of the generalized c
nonically conjugate coordinate and momentum.

We made some assumptions and simplifications to ob
the effective ‘‘dynamical’’ system of equations~32! and~33!
with one degree of freedom from the initial discrete dynam
cal equations~3!–~7!. An investigation of soliton dynamics
in the framework of this simple system describes the m
features of the nonlinear dynamic of the initial syste
though the initial one is much more complicated. For e
ample, it is well known that the nonlinear dynamics of d
crete systems, even in the case of a small number of deg
of freedom, can be chaotic. It occurs at so-called bifurcat
points, i.e., when the system or solution parameters are c
to values which correspond to the essential solution trans
mation. But numerical calculations show that the dynam
of the system become regular out of the vicinity of the
points. Subsequently solitonlike localized excitations
stable in these regions~see, for example, Ref.@12#!. So we
hope that solutions for gap and near-gap solitons, which
shall obtain using the effective equations~32! and~33!, will
be stable in domains of parameters far from the bifurcat
points. About the stability of gap solitons, see Ref.@13#. The
chaotic dynamics of gap solitons and their stability are
questions of special interest which we shall not discuss in
paper.

The existence of the integral of motionH allows one to
integrate the system of equations~32! and ~33! exactly. The
solutions for solitons of different kinds can be easily e
pressed in terms of the hyperbolic functions@4#, but it is
useful to use methods of qualitative analysis of dynam
systems and consider possible solutions of the system
equations~32! and ~33! in the phase plane (g, f ). Attention
should be paid to separatricies, which correspond to sol
l-
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e
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-
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s
e
e

e
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e
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solutions. The phase portrait of the system depends on
signs and on the value of the parametersl, m, p, q, ands,
and the value of the frequencyv.

V. GAP SOLITONS IN A DIATOMIC ELASTIC CHAIN

At first we paid special attention to the soliton dynami
of a diatomic elastic chain with a ‘‘hard’’ nonlinearity of th
on-site potential, i.e., on Eqs.~32! and ~33! with l5m
51, p5q5(11b/2C)/3, ands511 (C.0). In this case
the phase portrait of the system on the (g, f ) plane depends
on the relation between the frequencyv and the medium
parameterp. The dynamical solutions transform essential
and new solutions appear by way of bifurcation on so
linesv i5v i(p) on the plane of parametersv,p. The general
theory of bifurcations is given, e.g., in the book by Arno
@11#.

It is convenient for us to discuss the bifurcation picture
soliton solutions in terms of the dependence of the fix
points on the frequencyv and parameterp.

There are four domains of the values of parameterp: ~a!
p.1 (b.4C), ~b! 0,p,1 (2C,b,4C), ~c! 21,p
,0 (28C,b,2C), and ~d! p,21 (b,28C). In the
first region~a! for v,v1, the single fixed point in the phas
plane is the center atg5 f 50, and the separatricies and su
sequently soliton solutions are absent. Atv5v1 the first
bifurcation occurs: the center is split, and for the frequen
range inv1,v,v2 the system possesses a saddle poin
g5 f 50 and two centers at pointsf 50,g56A(v2v1)/p.
In such a frequency gap there are two separatrix loops, wh
issue out of the saddle, envelop the center, and enter into
same saddle. Atv5v2 the second bifurcation occurs: th
singular pointg5 f 50 ~saddle! splits into the center at the
point (f 50,g50) and two new saddle points@g50 and f
56A(v2v2)/p]. Now these two saddles are bound t
gether by two different separatrix loops, which envelop t
centerg5 f 50 and the centerf 50, g56A(v2v1)/p, and
correspond to the two different types of soliton sol
tions. Finally, at frequencyv5v* 5(pw22w1)/(p21),
at which the last bifurcation occurs, each of the center po
@ f 50, g56A(v2v1)/p] splits into the saddle points
f 50,g56A(v2v1)/p and new centers in the pointsf 0

56A(v2v* )/(p11),g056Af 0
21(v22v1)/(p21). The

discussed bifurcation picture for the dependencies of the
gular pointsg andf on the frequency is shown schematica
in Fig. 1~a!. ~The solid lines correspond to the centers a
the dashed lines correspond to the saddles.!

The phase portraits for different frequencies are shown
Fig. 2 ~see domainA), where the horizontal axis in all phas
pictures correspond to thef field, and the vertical axis to the
g field. The profiles of theg andf fields in all solitons can be
easily obtained from the phase portaits. It is clear from E
~32! and ~33! that in the linear limit the lower boundary o
the gap (v5v1) corresponds to the excitations withgÞ0
and f 50, i.e., theg field describes the excitations from th
lower branch of the spectrum. In contrast, the upper bra
corresponds to the excitations of thef field, and on the upper
boundary of the gap (v5v2) we haveg50 andf Þ0. In the
case of the diatomic elastic chain, theg field describes the
opposite-phase vibrations of heavy atoms with massM. Let
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FIG. 1. ~a! Bifurcation picture for the diatomic elastic chain in the case ofp.1. The solid lines correspond to the centers, and the das
lines to the saddles.~b! Bifurcation picture for the diatomic elastic chain in the case of 0,p,1. The solid lines correspond to the cente
and the dashed lines to the saddles.~c! Bifurcation picture for the diatomic elastic chain in the case of21,p,0. The solid lines correspond
to the centers, and the dashed lines to the saddles.~d! Bifurcation picture for the diatomic elastic chain in the case ofp,21. The solid lines
correspond to the centers, and the dashed lines to the saddles.~e! Bifurcation picture for the modulated nonlinear optical media. The so
lines correspond to the centers, and the dashed lines to the saddles.~f! Bifurcation picture for the modulated ferromagnetic. The solid lin
correspond to the centers, and the dashed lines to the saddles.
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us note that in the soliton forv1,v,v2 only the curve for
the field g(x) has the standard soliton form. The opposi
phase vibrations of the light particles~the f field! are essen-
tially smaller. The soliton can be considered as bound vib
tions of the lower branch, which are accompanied
localized light-atom vibrations, i.e., the soliton of the low
branch localized phonons of the upper branch. We will c
this type of soliton anS soliton. In the regionv2,v
-

-
y

ll

,v* , solitons of two types (S andC) exist. TheSsoliton is
similar to theS soliton in the gap, but is accompanied b
vibrations of light atoms (f field! with a finite amplitude at
infinity (x˜6`). It is important that solitons uniform in
space for thef field are stable whilev.v2, because the
dispersion]2v/]k2 for the upper branch is positive. That
why we can study the solitons of thef field with nonvanish-
ing asymptotes in this region ofv. TheC-type soliton has a
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FIG. 2. The general evolution of phase portraits of the system of equations~32! and ~33! with l5m, p5q, ands51.
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different form. The amplitude of thef field is essentially
larger than that for theg field and, in this sense, this is th
soliton of the upper branch. The envelope for light ato
vibrations has the form of a kink in this case. This result is
complete agreement with the analysis of the dynamics o
dark soliton in a monoatomic unharmonic chain. Finally,
frequencyv.v* in addition to solitons ofC and S type,
there exists a new type~K! of soliton in which the localized
excitation of thef field exists against the background of
nonvanishingg field. It is easy to see that this soliton is
combination of the bright localized soliton of thef field with
the dark soliton on the pedestal of theg field, i.e., the exci-
tations of thef field are localized in the ‘‘hole’’ in conden
sate of the excitations of theg field.

In the limit M5m we have a monoatomic chain wit
v15v25v* for k5p/2a and without a gap. The phas
portrait differs essentially from that given above in this ca
@see Fig. 3~a!#. There are no solitons now, but only speci
kinks of two types. In such a ‘‘phase kink’’ theg field tends
to zero at one infinity (x˜`), and thef field tends to zero a
another infinity (x˜2`). The fieldsf andg are identical to
one another as in the limitM5m, and describe the opposite
phase vibrations of the odd and even particles; the ‘‘ph
kink’’ is the localized phase shift in a nonlinear homog
neous standing wave. The value of this shift is equal to
lattice spacinga. In the diatomic chain, aK soliton repre-
sents the bound state of two different ‘‘phase kinks’’ wi
opposite signs.

Let us study the bifurcation picture in the seco
region ~b! of parameterp (0,p,1 or 2C,b,4C). In
this case, like the above picture, three bifurcations
the phase plane take place when the frequencyv grows.
The bifurcations atv5v1 andv5v2 have the same char
acter as in the above occasion, and solitons with frequ
a
t

e

e

e

n

n-

cies lying in the gap of the spectrum and near the g
have the same form as forp.1. But the third bifurcation
at v5ṽ* 5(v22pv1)/(12p) differs significantly from
the bifurcation atv5v* for p.1. Now at v5ṽ* the
saddle pointsg50 andf 56A(v2v2)/p split into a center
at pointg50, f 56A(v2v2)/p and two saddle pointsg0

56A(v2ṽ* )/(11p) and f 056Ag0
21(v22v1)/(12p)

@Fig. 1~b!#. An analysis shows that forv.ṽ* four different
types of separatricesS, C, S̃, andC̃ coexist. Separatrices ofS
and C type are continuously derived from ones conside
for the casev,ṽ* and the separatricesS̃ andC̃ correspond
to new solitons. The main feature of the latter appears to
the fact that now none of the field vanishes at infinity, a
the main field difference betweenSandC solitons disappears
— they differ only qualitatively by the amplitude of the fiel
at the soliton center. Thus, a symmetry betweeng andf fields
arises inS(C) and S̃(C̃) solitons. In the special case ofp

51 the third bifurcation point goes to infinity (ṽ*˜`), and
we have a simple bifurcation picture similar to those for
nonlinear modulated optical medium investigated in Re
@1,3# @in the case of hard nonlinearity withg,0 in Eq. ~4!#.

In the limit of a monoatomic elastic chain withM5m,
solitons ofC, S, C̃, andS̃ type transform into ‘‘phase kinks’’
as in the above casep.1, but now the structure of thes
kinks is somewhat different from that of the above kink
Now the phase kink describes the phase shift by the in
atomic spacinga in a standing nonlinear wave of finite am
plitude, and separates two domains with the following str
ture of the atomic oscillations: ( . . .↑↑↓↓↑↑↓↓ . . . ). @In the
above casep.1, the structure of the atomic oscillations h
the form ( . . .↑0↓0↑0↓0↑ . . . ), where indexes (0) denot
nonmoving particles.# The bifurcation picture and phase po
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traits for case~b! are presented in Figs. 1~b! and 2~domain
B).

The most difficult thing for investigation is region~c!,
where the nonlinearity of the on-site potential changes s
and is in competition with the nonlinearity of the interpa
ticle interaction. The bifurcation picture for this case
shown in Fig. 1~c!. ~As usual, the solid curves correspond
the centers and the dashed lines to the saddles.! There are
three bifurcation points, but now the frequencyṽ* lies in the
gap (v1,ṽ* ,v2). The corresponding phase portraits f
different frequencies are sketched in Fig. 2~see domainC).
~At a certain frequencyv0 the changeover from one syste
of levels to the other takes place.! Solitons ofC andS type
are similar to the solitons of these types in case~a! after
changing the values off andg. Two new types of solitons, o
P andR type, are analogous to the solitons ofS̃ andC̃ type
in region ~b!, but amplitudes of thef field in the centers of
these solitons are smaller than its assimtotes in the infinit
is of interest to consider the limit of a monoatomic chain

FIG. 3. ~a! Phase portrait of the system of equations~32! and
~33! in the limit of M5m, with l5m, p5q.1, s51, andv1

,v. ~b! Phase portrait of the system of equations~32! and ~33! in
the limit of M5m, with l5m, p5q, 21,p,0, s51, andv
,v1.
n

It
r

21,p,0. In this limit the gap is absent (v15v25ṽ* )
but nonlinear kinklike solutions lie on each side of the fr
quency v15A(2A1a)/m. These phase-shift kinks ar
analogous to phase kinks of the case~a! (p.1) in the region
v,v1, and they are similar to the phase kinks of case~b! for
0,p,1 in the regionv.v1. But now there exists only one
type of such solitons for all the frequenciesv,v1 and v
.v1. The phase portraits for different values of the fr
quency are presented in Figs. 2~see domainC), and 3~b!.

Finally in region~d! with p,21 (b,28C), the bifur-
cation picture is analogous to that in casep.1 ~a!, but the
roles of the fieldsf andg are interchanged and the sequen
of bifurcation frequencies changes@compare Figs. 1~a! and
1~d!#. Now the nonlinearity of the on-site potential is ve
soft, and this fact is more important than the hard nonline
ity of interpretable interaction. The phase portraits for t
casep,21 ~in Fig. 2, domainD) are similar to those for
casep.1 ~Fig. 2, regionA), and in limitM5m we have the
same phase-shift kink, but in the areav,v1.

We supposed in our investigation that the parameterl
andm in Eqs.~32! and ~33! are equal. This is correct in th
main approximation forM2m!M . In the next approxima-
tion @for l/m511(M2m)/2m] the boundary between do
mains~a! and~b! splits into the narrow region with the width
Dp;(M2m)/m @9#, but we do not discuss this effect now

VI. GAP SOLITONS IN MODULATED NONLINEAR
OPTICAL MEDIA

For the nonlinear optical model, the functionsf and g
obey Eqs.~32! and ~33! with l5m51, s521, andp5q
521. The bifurcation picture for the dependencies of t
singular pointsg andf on the frequency in this case is show
schematically in Fig. 1~e!. It is the same as in Sec. V in th
limit p51, but now the bifurcation picture is turned over
the nonlinearity is soft and the valuesg and f switch roles.
The only fixed point forv.v2 is the center atg5 f 50, and
the soliton solutions are absent. Atv5v2 the first bifurca-
tion occurs: the center is split, and for the frequency range
v1,v,v2 the system possesses a saddle point atg5 f
50 and two centers at pointsg50 and f 56Av22v. In
this frequency gap there exist the two separatrix loops, wh
correspond to the usual gap solitons@1#. At v5v1 the sec-
ond bifurcation occurs: the saddleg5 f 50 splits into a cen-
ter at the point (f 50,g50) and two new saddle points (f
50,g56Av12v), which are bound together by two differ
ent separatrix loops, corresponding to the two different ty
of soliton solutions@2,3#. In nonlinear modulated optical me
dia the gap solitons have the form ofS and C solitons in a
diatomic elastic chain, where the valuesg andf switch roles.
But in the optical model the third bifurcation andK-type
solitons are absent. Therefore, in the homogeneous l
phase kinks are also absent.

VII. GAP SOLITONS IN A MODULATED
FERROMAGNETIC CHAIN

In a diatomic easy-axis ferromagnetic chain with diffe
ent length of sublattice spins, Eqs.~27! and~28! are reduced
to the system of equations~32! and ~33!, with s521, p5
2z, q52z(m0 /M0)2, l51, and m5m0 /M0, where z
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5bM0/2Am0!1. In this example not only are the coeffi
cients in linear terms of Eqs.~32! and ~33! for the valuesg
and f different because of the modulation of media, but t
coefficients in nonlinear terms are different forM0Þm0 too.
But as we used the resonance approximation for the s
value (v2v1)/v1, we must put M0>m0. The bifur-
cation picture in this case is shown in Fig. 1~f!. Forv>v1 it
is the same as in Sec. VI for optical media, but now th
are three bifurcation points. For the frequency range inv1
,v,v2 the system possesses a saddle point atg5 f 50,
and two centers at pointsg50 and f 56A(v22v)/z.
Here we have the usual gap solitons. Atv5v1 the saddle
g5 f 50 splits into a center (f 50,g50) and two new saddle
points@ f 50,g56A(v12v)/z#. But now the third bifurca-
tion take place atv5ṽ* 5v12(v22v1)z/(12z),v1. At
v5ṽ* the saddle pointsf 50 andg56A(v12v)/z split
into a center at pointsf 50 and g56A(v12v)/z

and two saddle pointsf 056A(ṽ* 2v)/(11z) and g0

56Af 0
21(v22v1)/(12z) @Fig. 1~f!#. This picture is

slightly like Fig. 1~b!, but the fieldsg and f switch roles and
the succession of the bifurcations changes direction.
phase portrait and the distribution of the fieldsg and f are
now topologically as in Fig. 2, domainB. Analysis shows
that for v,ṽ* four different types of separatricesS, C, S̃,
andC̃ coexist, none of the field vanishes at infinity, and t
principal field difference betweenSandC solitons disappear
In the limit of monoatomic ferromagnetic withM05m0 soli-
tons ofC, S, S̃, andC̃ type transform into ‘‘phase kinks’’ as
in the diatomic elastic chain.

VIII. GAP SOLITONS IN AN EASY-PLANE
ANTIFERROMAGNET IN AN EXTERNAL MAGNETIC

FIELD

In the case of an easy-plane antiferromagnet in the p
ence of a magnetic field in the easy plane, the dynam
equations~30! and ~31! are reduced to Eqs.~32! and ~33!
with l5m51, s521, p52(112g/J2bh/2J)/3, andq
52(112g/J1bh/2J)/3. The frequencies of boundaries
the gap (v2,1>112g/J6bh/2J) depend on the magneti
field like parametersq andp, but the dependencesq(h) and
p(h) are unessential. So in the basic approximation one
e

all

e

e

s-
al

n

consider thatp>q>2 1
3 . This is the same situation as for th

nonlinear diatomic chain without on-site potential but with
soft nonlinearity. The bifurcation picture has qualitative
the form represented in Fig. 1~f!. But now the third bifurca-
tion frequency isṽ* 5(3v12v2)/2, and the coordinates o
the fixed points on the phase portrait are the following:
center atg5 f 50 for v.v2; the saddle atg5 f 50 and the
centers atg50 and f 56A3(v22v) for v1,v,v2; the
centers atg5 f 50 and g50; f 56A3(v22v), and the
saddles atf 50 andg56A3(v12v) for ṽ* ,v,v1; the
centers atg5 f 50, g50, f 56A3(v22v), f 50, andg

56A3(v12v); and the saddles atf 56A3(ṽ* 2v)/4,g
56A3(v22v1)/21 f 2.

IX. CONCLUSION

The main result of this paper is a qualitative analysis
all kinds of small-amplitude excitations with frequencies l
ing in the gap and near the gap of the spectrum of lin
waves for modulated media. Starting with four different no
linear modulated systems for the small value of the modu
tion in a long-wave resonant approximation, we obtain
simple system of cubic ordinary nonlinear differential equ
tions of first order for the effective dynamical system wi
one degree of freedom. The nonlinear part of these differ
tial equations includes two independent parameterss and
be presented in the following forms:p f31s f g2 and pg3

1sg f2. A full qualitative analysis of the system with differ
ent relations between parametersp ands was carried out, and
a general classification of all types of gap and near-gap s
tons of this system is given in the paper. We investig
transformations of the system phase portrait and the bifu
tion picture of soliton solutions with the frequency of the g
soliton and under changes of the system parameters.
results are illustrated by the examples of diatomic ela
crystals, the two-sublattice ferromagnet, and the easy-p
antiferromagnet.
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